DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4017B
 MSI
 5-stage Johnson counter

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4017B is a 5 -stage Johnson decade counter with ten spike-free decoded active HIGH outputs (O_{0} to O_{9}), an active LOW output from the most significant flip-flop $\left(\overline{\mathrm{O}}_{5-9}\right)$, active HIGH and active LOW clock inputs $\left(\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}\right)$ and an overriding asynchronous master reset input (MR).

The counter is advanced by either a LOW to HIGH transition at CP_{0} while $\overline{\mathrm{CP}}_{1}$ is LOW or a HIGH to LOW transition at $\overline{\mathrm{CP}}_{1}$ while CP_{0} is HIGH (see also function table).
When cascading counters, the $\overline{\mathrm{O}}_{5-9}$ output, which is LOW while the counter is in states $5,6,7,8$ and 9 , can be used to drive the CP_{0} input of the next counter.

A HIGH on MR resets the counter to zero ($\mathrm{O}_{0}=\overline{\mathrm{O}}_{5-9}=\mathrm{HIGH} ; \mathrm{O}_{1}$ to $\mathrm{O}_{9}=\mathrm{LOW}$) independent of the clock inputs ($\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$).

Automatic code correction of the counter is provided by an internal circuit: following any illegal code the counter returns to a proper counting mode within 11 clock pulses.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 1 Functional diagram.

PINNING

CP_{0}	clock input (LOW to HIGH triggered)
$\overline{\mathrm{CP}}_{1}$	clock input (HIGH to LOW triggered)
MR	master reset input
O_{0} to O_{9}	decoded outputs
$\overline{\mathrm{O}}_{5-9}$	carry output (active LOW)

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

```
HEF4017BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4017BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4017BT(D): 16-lead SO; plastic (SOT109-1)
( ): Package Designator North America
```

3
G661 Kıenuep

Fig. 3 Logic diagram

FUNCTION TABLE

MR	CP $_{0}$	$\overline{\mathbf{C P}}_{1}$	OPERATION
H	X	X	$\mathrm{O}_{0}=\overline{\mathrm{O}}_{5-9}=\mathrm{H} ; \mathrm{O}_{1}$ to $\mathrm{O}_{9}=\mathrm{L}$
L	H	L	Counter advances
L	\int	L	Counter advances
L	L	X	No change
L	X	H	No change
L	H	$\boldsymbol{\Gamma}$	No change
L	L	L	No change

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
2. $\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
3. $\mathrm{X}=$ state is immaterial
4. $\int=$ positive-going transition
5. $\searrow=$ negative-going transition

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \mathrm{O}_{0} \text { to } \mathrm{O}_{9}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 140 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 280 \\ 110 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} 113 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} \hline 125 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} \hline 250 \\ 100 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & \hline 98 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \overline{\mathrm{O}}_{5-9}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PHL }}$	$\begin{array}{r} 145 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 290 \\ 110 \\ 80 \end{array}$	ns ns ns	$\begin{array}{r} 118 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{array}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} 125 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 250 \\ 100 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 98 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{1} \text { to } \mathrm{O}_{9}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 115 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 230 \\ 100 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \overline{\mathrm{O}}_{5-9}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} 110 \\ 45 \\ 35 \end{array}$	$\begin{array}{r} 220 \\ 90 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 83 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{0}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} 130 \\ 55 \\ 40 \end{array}$	$\begin{array}{r} 260 \\ 105 \\ 75 \end{array}$	ns ns ns	$\begin{array}{r} 103 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TL }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.	
Hold times $\mathrm{CP}_{0} \rightarrow \overline{\mathrm{CP}}_{1}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{aligned} & 90 \\ & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 20 \\ & 10 \end{aligned}$	ns ns ns	
$\overline{\mathrm{CP}}_{1} \rightarrow \mathrm{CP}_{0}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 10 \end{aligned}$	ns ns ns	
Minimum clock pulse width: $\begin{aligned} & \mathrm{CP}_{0}=\mathrm{LOW} ; \\ & \overline{\mathrm{CP}}_{1}=\mathrm{HIGH} \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{WCPL}}=$ $t_{\text {WCPH }}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	ns ns ns	see also waveforms Figs 4 and 5
Minimum MR pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twmR	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	ns ns ns	
Recovery time for MR	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {RMR }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$	ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 6 \\ 12 \\ 15 \end{array}$	$\begin{aligned} & 12 \\ & 24 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	

	$\mathbf{V}_{\mathbf{D D}}$ \mathbf{V}	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Dynamic power	5	$500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$2200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$6000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load cap. (pF)
		\sum ($\left.\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs	
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 4 Waveforms showing hold times for CP_{0} to $\overline{\mathrm{CP}}_{1}$ and $\overline{\mathrm{CP}}_{1}$ to CP_{0}. Hold times are shown as positive values, but may be specified as negative values.

Conditions: $\overline{\mathrm{CP}}_{1}=\mathrm{LOW}$ while CP_{0} is triggered on a LOW to HIGH transition. twCP and
$t_{\text {RMR }}$ also apply when $\mathrm{CP}_{0}=\mathrm{HIGH}$ and CP_{1} is triggered on a HIGH to LOW transition.

Fig. 5 Waveforms showing recovery time for MR; minimum CP_{0} and MR pulse widths.

Fig. 6 Timing diagram.

5-stage Johnson counter

APPLICATION INFORMATION

Some examples of applications for the HEF4017B are:

- Decade counter with decimal decoding
- 1 out of n decoding counter (when cascaded)
- Sequential controller
- Timer.

Figure 7 shows a technique for extending the number of decoded output states for the HEF4017B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

Fig. 7 Counter expansion.

Note

It is essential not to enable the counter on $\overline{\mathrm{CP}}_{1}$ when CP_{0} is HIGH , or on CP_{0} when $\overline{\mathrm{CP}}_{1}$ is LOW , as the this would cause an extra count.

